On compact spaces carrying Radon measures of uncountable Maharam type
نویسنده
چکیده
If Martin’s Axiom is true and the continuum hypothesis is false, and X is a compact Radon measure space with a non-separable L1 space, then there is a continuous surjection from X onto [0, 1]1 .
منابع مشابه
Nonseparable Radon measures and small compact spaces
We investigate the problem if every compact space K carrying a Radon measure of Maharam type κ can be continuously mapped onto the Tikhonov cube [0, 1] (κ being an uncountable cardinal). We show that for κ ≥ cf(κ) ≥ ω2 this holds if and only if κ is a precaliber of measure algebras. Assuming that there is a family of ω1 null sets in 21 such that every perfect set meets one of them, we construct...
متن کاملOn Radon measures on first-countable spaces
It is shown that every Radon measure on a first-countable Hausdorff space is separable provided ω1 is a precaliber of every measurable algebra. As the latter is implied by MA(ω1), the result answers a problem due to D. H. Fremlin. Answering the problem posed by D. H. Fremlin ([4], 32R(c)), we show in this note that, assuming (∗) ω1 is a precaliber of every measurable Boolean algebra, every Rado...
متن کاملCompact composition operators on certain analytic Lipschitz spaces
We investigate compact composition operators on ceratin Lipschitzspaces of analytic functions on the closed unit disc of the plane.Our approach also leads to some results about compositionoperators on Zygmund type spaces.
متن کاملOn the dual of certain locally convex function spaces
In this paper, we first introduce some function spaces, with certain locally convex topologies, closely related to the space of real-valued continuous functions on $X$, where $X$ is a $C$-distinguished topological space. Then, we show that their dual spaces can be identified in a natural way with certain spaces of Radon measures.
متن کاملThe associated measure on locally compact cocommutative KPC-hypergroups
We study harmonic analysis on cocommutative KPC-hyper-groups, which is a generalization of DJS-hypergroups, introduced by Kalyuzhnyi, Podkolzin and Chapovsky. We prove that there is a relationship between the associated measures $mu$ and $gamma mu$, where $mu$ is a Radon measure on KPC-hypergroup $Q$ and $gamma$ is a character on $Q$.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007